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Multiprocessor Sparse L/U Decomposition

with Controlled Fill-in

G itI a A Ing)) an nd
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U n iv ersit y of Colorado

Abstract

Iliirilig L/U (ecoll)po it l of a spar-se tuunt rix. it iq fSimslt' to pci-rorni Oi)
put ail on ninny oingonal vpiniJlts siiiiilt ii('()lsly. Pivots flint (iil be' pro-
cessedl ill laraIllel ire related by a comipat ililit v relition andl are grouj~vd iii a
(oW pa tib le set . TI e collect ion of all manximial comnpatIi bes yields (Ii Ieren I
iiiaximiiiin, sizf.d sets or pivots that can be processed in parallel. Generation of
lie in a i ainu comnp ailibles is based on tb e in formnation obtained froml an)

in corlp at ible t able. Tliis table provi1(1es in form at ion about p airs of in coipa-
I ille pivots. In this paper, generation of the maiximial compatibles, of pivot
ceements for a class of smaill sparse maitrices is studi~ied first.. Tile aIlgorit iiil
in1VOlves n b~inary tree searchi and hins a comiplexiy ex ponential in the order of
flie imat1rix. l)itfrren t sftrat egies for select ion of a set of comnpi ible pivots

based onl thle NI ark ow it z criterion ire' in vest iga ted. Thel( coipet in g issue(s of
paia Ilelisi inaud fi ll-iii geuiiera tion are st ud~ied n ( resu Its are p~rov idled.
eciiiniiqt e for obtaining an ordered comipatible set directly from the orderedl
ii colp at i lde t able is givenl. Iiis t ccliiiiqu e generates a set of coipat ibe
pivots i~if in lite p~roperty of genierat ing fewv fills. A newv hueristic algorithm!P is
lien proposed that. comibines the idea of anl ordered comipatible set wit ii a

liiiied ~iiiary tree seirchi to generate several sets of comnpatible pivots inl
liinear timne. Finally, an elimnination set to reduce the matrix is selected.
Parameiters are suggested to obtain a balance lbetwecn parallelism and ill-ins.

msitsof applying thle proposed algorit limis on several large application
intrices ire presenitedl and analyzed.

tilpsenrch wvt !turportd in part by NASA Contract No. NASI-17070 and by the Air Force Offr or
Srie'ntiir R~riec under Grant No. AFOsR R-Sthile the aitthors were in residence at ICASE, NASA
Langly Re!-Parch Center, H1ampton, VA 23665 .



Introduction
Soliit iou of nl lii'ar svst cii or ('(jilt ols i- re-quired i11 in iT ppliatiota

progrmi-s. One such area is tilie VLSI circuit simuint ion programis. Eveny
(OtiliIer-nided( circiuit ana1.lysis program) iflcliides a routine that solves a sys-

li or slai-se liutear c~itos if imiielct integrat ion is used, at. every time
Step one mu11st Solve n System of nionlinear epittions (uisually 1)y Newton it erat-

ilon ). Af evecry iteration a si st ei of linvner equiat ions mnuist he ;olved.
D~epending oil the intrgrat ion nielhIod, i lie number of timies that. a sparse svs4-
I (iii of linear eqlualioiis need-, to be0 solved iiy be large. If it is possible to
rl'(lice the solutioti time for tlhe sparse 5'Stetin. flt, total circuit atialvsis tilif
woulld he significantfly reduced. One met hod for solving such a sy0t em is tie(
fact oriz'.ation of thle maitrix into lower and upper t riamtgulr mnatrices f~dlowed
hi forw~ard and~ back siubst it tit ions.

One promising area for advances inl sollit ol t echn ique is thle Ilse of llaral-
Idl (compjut ers and lparnllel algorithms. Ouir previous work on jparnlleliziiig II he

NA28 [ 11 sparse mat rix package for I the NET [2] iomlt processor sugge-sts thant
suflicient parallelis;m is not 01)1 inahie iii sparse IjT (decomposit ion withlout
procvs ,ing nmlt iple pivots in parallel [.31. l'arnilcl pivoting st rAt eies hanve
been Itivest igat ed by (ala hat 1-1] a rid ritre recerity byi'l Wing aInd Hli: g 151.

161. less Plidl Nes 1-1] nn Pet ers [8]. Alt hougli II( liemii ber of operations pos-
sile inl parallel muay be large in an very sparse ste. exploilttion of all (Ilhe
avilb- p~irailelisni riy sigificatuy imncrv'aiw 1hle geiier' ion of fill-iiis ( er

elvitient or tilie mantrix beconmti nonzero as a result of elimination). Since
fill-in increases thle total comnputation work, it is important to keep the
maii ier geri ra ted r ider coot rol. The pirpose of this work is Co study spa rst
I/1 de(I(composw5 it ion on a iiinut i procesF-r by ii'n s of an a lgorithIiin whiichi
exploits parallel pivots andl keeps fill.1 1, ow. The lasof sparse, systems;
griliinmg thle studly 16ll be those arising i; thIe simulation of VLSI circuit
using a program such as SPICE 10J.

W~ing ii(l Ilating in [5] represent the I riamigutlation process by a dIirect ed
gra ph where, illie vertices represent a dlividle or uipdatfe operation (operations
requ iredl for performing thle tniigulat ion), andI(l h edges, determine tilie pre-
reen'ce relation of thle op~erat ions to be executIed. By assign ing level numtbers
to thle directed graph. tilhey- iden'mtify all operat ioius on fihe same level to be

d~m il pi-lll. he iie veigluted comin it ion of fill-in cost alri n depthI of
cr"ttipiitatiou in a hecurist ic to dletermine a niearly optimal pivot. sequence.
While Wingc and 11a11ing idlentify all thle operatiotis that, can be done in paral-
lel. we will Idenl If iall Mpivots t halit call be processed in parallel at. each step. Fcr

An issute thIiat. has not been dIiscutssedl in thle lit erat ure is that in a sparse.

maitrix thlure are uisually dliffere'nt sets, of possible pivot candidates for each *

st ep). an i( lie sizes; of thIiese sets in av w(ell va ry. It Rcorns im port ain if)t st idv

t IieseP possibilities aid tilie deffc of Tp ara I Id piv ot iiig on a ppllicat ion 111:11rices.

Algorithms identifying parallel pivot candlidates are complex, so it, will be of
value to comil u p ith such algorithmsiv only if thle amount of parallelism in
circuit domaiin mat rices is large enough to justify the compuitation required iy>i,

to idleit ifv it. I t Cn~, 'cr,
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I n t his paip er. %% v tilie a shair 'l-ieinwr% , 11 1 d e I for ouifr l):ira t-eI
(iit i lon, ill wh1ich( the ( tot li memiory a iddress spaflce( is alccess ible tii for inly

toll1 parni~l ii units (processes or inIiidal pr(we(ssors). This ('oluipli t ni:I
1110(1(2 shold~~~ p~rovide synchlroization1 inechaniinisi to allow~ inult ipl- iiwinor%
tipdates .If iuiiilp tipaites are iiined at t he- s:uin iiiory cell, the penaltY
paid is I short delay inl access timue. Based oil I his (omijpittational model (', theii
first ii a i of (ii, spaper is devoted to study t he a inouint of parallelismi I fiat
exissI in applical ion mantrices. This is carriedl ot by prodiicing all p)ossible'
sets (f J)ivot ai nd idat CS wh ichi canl he processedl ill parallel ait each-I step for a
Tnulber l(Tofsii mtiiat rices. Observ'at ions are th1en made on d ifferent t rat egies
for choosing one of thle svts produced at each step, and hence the general ion
or fill- ins and possible parallel p iv ot.ing steps. Thlie comnplet e a 1( (e ale
aimalvsis of this st 111'. leadls us into thie second~ half of t li papr, whrew

(describe a fast licurist ic algorithm to produce a set of acceptable parallel
pivot ennaliiat es for re(Iiciiig tilie mat11rix at each Step. Issues involved ill
b a ai iig paraillel wo,(rk aniid fill-in generatIion are discussed a 11( verified

hiro iftl I sniilat ed resuilts.

Parallel Pivot Candidates
'Theiftfriangtilatim ionet hod iised here as mientijoned above will be sparse

171* (lecollposit i. For simiplic'ity we'.( only cotisider I lie diaigonal eI'(lvin (,f
the in-trix a-s pivot candidates. Note tHat pivoting usually refers 1o iii-m
mti c penimitat iofs of the matrix for swappig an off-diagonal niitix te-

iieiit wit ii a diagonal (elemient. IIn this paper, we are only considl(ring svyn-
niet nc p)CFmuittions of thle mlat rix . EvenI thoughi we are not pivot inig inl the
ablove sense, tilie t cii is pivot and pivoting are used~ thIiroughouiIt flie pi~per to
refer to thle diagonal element used] to reduice the mat rix at a given step) and a1
sy mmietric pernu tat ion respectively.

In a sparse mantrix, two pivots a. and a. can be processed in parallel if
of.. and aj. ire both zero. In other words, lMiring elimination, row j is not
inl%-ol%-ed inl th h ii, a n process iak inig place for pivot aW, and row i is not
involved in filie process for (II .. This st at ement can only be trule if we p~rovideP
correct synch ronizat imiq for sinoultaneous updlate during the elimination withI
paraillel p~ivot candlid at e-.:

l1. Diiing chinimat ion, whlien process inig pivot s an ..... in pa rallel, it is pos-
sible that an element of a nonpivot rowv needs to be updated by all1 or
sonic of the p~arallel processes handling pivots i,j,... for the current step.
In order for each process to obtain a comp~letely updated value, as a
result. of a p)reviouis updlate, (lie update op~eration must be done asyvn-
rhronotisly by parallpcc'Ms Oi thle othe'r hand, the order in~ which
p~arallel prcse update an element is of no importance (except for
roumnd off errors).

2. During elimiinat ion, when processing pivots a..,a ... in parallel, it is p~os-
sible that a fill-in is generated in posit ion (in,n1 * It is also possible thfat
more t han one process tries !o generate a fill-in in the same positioii
(Yn,n). The position (m,n) for the ill-in must be created once by) one
pro~es-, only, and other processes wvill update its value as in 1.
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If t%%o pivots a. and a.. call be proces~sed in p~arallel, and if an..ida
(-,iil also be& prOCCesed in parallel, t hen at-i, fi and a k caniiot necessa rily be
p ro cessud in par alleIl. Ti'le re fati toll iv 'een pa rallel pivot cind(1 iat ('5 is
reflexive and( symmiinetric, but not Ira n.silie, mid is th~us a compjallbililij rela-
ioll. Two( piv.ots related in this wa-I will simiply be said to be coillmpal fle in

what follows . A conseql!ence of lithe nottranlii t of ft( iColiil ilility vea
I ionl is thfat it classifies tihe cedments of a set ilnto iioiidisjoiiit subls('t. so that
all memblii(ers of a 511 bset are comnpat ile. Thiese sti lset are cal I(d co mliiat ii -
it% ch (n s's. Thlis, inl order to () me uip wit h ill possible sets of pivots thiiat can
be procv',scd inl parallel and are or maximum size, we need to find all maimial
compatibles. A maximal compatilble is a compJatible that is not, included in)
,any lairger comp~at ible.

To charifv thle (Iiscli ssion , we de (fine a ))oolea n iit.rix B3 for ea cl sparse
lnatrix A, sieli that:

b.j- I if f a 0
b.1.' 0 otberise

%%'.here b. md and .. denole elements of 13 amid A respectively.
iI) 

t I

ze' o'rnl npproaches for ('onsi rid ing ft(i set of maximal comnpat ibles exist,
alid I Iie, are' all based onl cornstruct ion of anl incompat ile tab~le 110]. Tile
ill COrnPal Od e talble specifies. pa irs of incomnp at ible elemnen ts. Assu me pivots
are takeni from filie dIiagonal elements of thle sparse mat rix :ind are numbnered
I thrIi rnh it corresJpon iding to (Iiagoni l elements of rows I t hrou gh n. Now we
could rfe(sdlt the ihicomfat ible tale as a t able consistinug of (li-I) collmnls.
'N here eachi colitin i has (n-i) elements. Columiins of thle t able c'orrespondI to
f) lv J 'l ements of thle mnat rix,. ('oiinl one C r oft I t a ble, cor respRond inug to
pivot liii lnhber 011e, is set to tilie bit vector result in g from ornc row and1(
(olmni oile of the mat rix 13 andl keeping the last (ni-i) elements. ThIe samle

process is repeat ed for pivot 2 (column 2 of thle tialle), for thle slllmhttrix
o1) :lli(d from the original mat rix with row aido column one eliminiated. For
C'.e ry c d 1111 or ft I t able (Ifit is corn pleteI cl(onlst ructed((, d ie( cor respond(in g
re'.'. /()hmm o11 r thle mat rix is eliminated. The pro~cess is rep~eated~ for all1 pivots
ill ordler. It is ili fortaint. to note t hat thle ill '011 pit ibleI tab Ic is constructe(' for
a ,ivr('l rdevring, of the sparse mat rix. Thui;s, I here are n ! (liffereiit, incominpti-
lble ta1bles for it! possible diagonal orde-rings of an n by n sparse 1utat rix. Inl
wliiat follows, we represent thle incompat ible table as, an a rray of dimension n,
saV 111p16I( ii, with) elements of tflie array- beingo sets of at most n elements
each. IEach set corresponds to a columin or the table. As an illust rative examl-
pie. the ilicoupat ilble I abfr for filie miatrix AlI of Fig. 1.1-a is given in Fig.
1. 1 .

The maximal compatibles are found by combining the pivot-pairs from
thle inicompat ible table into larger groups with comp~atible elements. Several
systematic approaches for extracting tlie maximal compatibles have been sugr-
gested. andl they all use ain exhaustive search routine. Thle one approach that
seemis to be more suitable for programming on a digital computer is one that
assuume i~iiiailly that all pivot candidates can lbe grouped into one set. Thlen)
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1 2 3 4 5 6 7
! x
2 x x
3 x x x x
.1 x
5 x X x
6 x
7 X x x

Matrix AI
Fig. !.l.a

2

3 x

x x
6 x
7 x x

1 2 3 4 5 6

lnicoimpitihle Table
Fig. 1.L.b

fl,, inrrmi ti on from tie incompatible table is used for contradictions and
splilling tle groups where necessary. This procedlire involves searching a
biiiiry tree. Initially, it is assu med that all pivots are comaniible. They are
gr( itped in one set consisting of ill pivot elements. This set will he at the
root of a Iai :ry tree, level zero. Next, Ihe set of pivots incompatibleh with
pivot number one, obtained from the incompatible table, is used to split tlie
set at ilie root. into a left and a right set, constituting level one. The left set
consists of all elements of its parent set, at level zero, except those incompati-
He with pivot one. The right set. consists of the same elements as the start-
ing set (parent, set.), except. pivot one itself. At. the next step, the incompati-
ble information for pivot number two, is used to break each set at level one
into a left and right. set. for level 2. Furthermore, since the matrix is sparse,
some of the sets at. a given level will not split into smaller sets for some pivot-
ing elients, but they may still consist of incompatible elements and will
spill for some later pivots. Consequently, the binary tree corresponlding to
this search -will not always be a dense tree. This process is repeated until no



5

Mo)re splitting of tlie sets is possible. Ihe leaf sets are then ( hecked 'Ind
every set included iii a larger leaf set is eliminated. The remaining sets con-
stit ute all posible maximal compatibles. Note that the length of , path from
the root to a lear coil be it most n.

The abov,c process is shown for the example matrix of Fig. 1.1 in Fig 1.2.
iniliAlly, piots nittumber I through 7 are grouped together as the starting set.
Col imit one of tile inco)mpatil)le table indi iates. that pivot 5 is incompatible
with pivot one. Thus the starting set is split into two sets (1,2,3,1,6,7) and
(2,3A,5,6,7). At tie next level, these two sets are broken into four sets, ('acl
using tie incompntibility information for pivot number two from the table.
This process is continued until no mnore splits are lossille. At tie end, ilie

. 212.,,,C,6,7] 123,, ,5,6,7
a d

[1.3.4,71 [1,4,6,71 13,1,7] 1.1,5.6.71
brA

[4,,61 4,0,71
e

Binary Tree Search to Obtain

the Set of Maximlial Compat il)es

Fig 1.2



extra sets (3,4,7) anid (4,6,7) which are included in the maximal sets, (b) anid
ce) respectively, are eliminated. The remiainiing five sets are (the 11minial

A h ighi level dlescrip~tion of lte above procedu re is given below:

procedure NIAXCO1lI(sset,i)
Assumupt ions:
- pivot camid idlales are nm nb ered fromn I to it.
- in it ia lly ss;t (coinsist s of all pivots in thle miat rix amnd

iis (t(e first pivot.
while i<n do
begin
(*split sset into left and right, sets*)

ISOt = sset, - imp1 hI[i]
rset = sset - lil
if (Iset not a compJatib~le set) then

in axc('21p (Is et J i+ I
if( rset not a comnpat iblec set ) th1en

mua xcoin p(rsct, i+ 1)
end

In I lie above procedlu re. many b~ranchies do not needI to be contint((l to the
Coinplotiou of thle sea rch, sinice they are included in other subtrees. More-
over, as wIll be described later, we only neced to produce comp jatilble sets of
ma1XIni)MD size. Tlhu.,, there are many lbraiiclies in this tree that could be
trimmijed to limit tibe aimounit of searc. EvnI ihiligteefa ie.ti

al-orit hin hia, expoiittial commplexity, aind only serves to obtain itiformiAtIo
abmint spa rse iimat rices .

To st Ih~~1le issue lic isctssed earlier, a PASCAL program %\as N rittl to'i 1

jerformn symbi iolic L/1' decomp1 osit ion on a sparse inat rix. Our objec liv ~a
to sItidy the elfects of paraillel pivotinug so t lie program performs tlite decom-
positimon t) thle last par'allel Step amid does 101 ('onitiue if p~arallel pivot caiidi-
(lt e are( mnot av'ailable. The strticture of thle programn is outlined below:

pro-ram PIlVOTSEiT
- Read in Inputt mlatrix and constrn'ct mjatrix structure.
'-('misi ru('t all imaximal comp~jat ibles.

-if parallel pivot Ing is not possib~le go to stop)
T Iic'k a, set of com)ilpatIi ble p iv ots to be processed

iii parallel.
-lerinite tw lemmat rix according to tlie parallel pivots for I his step.
-reduiicc the mat rix aiid in sert lthe resuIt anmt fi ll-inis.

-RHep)eat.

-S top.
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Analysis Perforined
Ili general, in mat rices aris inig froiii circuits t Iaerc are many differenat Nets

of comapat ile p~ivots of equal iiaaximuiit size. Depending onl how a set is
cho.sen to reduce te ie at rix at each st ep, we obtain a d ifferent belavi" or in
generati onl of fill-ini elemti i s, and ( as a result t, diflferenat p)ossiil iit ies fOr con-
tilling p~ara1llel pivot ing Ili the next steps. 'Illii Issues or generation of fill-inas
and p~ara llelismIl in p)iv oting hmave been s t udied. WVe used dIifferenatt st rat egies
to select a set of comnpat ible p~ivots aiid thein obtaiined statistical informattion
from somne circuit iniat rices geniiera ted froiii thIae SPIC(E circ uit simul iiat ion p ro-
grain.

The Miarkowit z crit erion 1111 is well knaowna for miniimiizinig tile gelierat iOu
of fill-ilit, in sparse mnat rices in sequ en ( a p rograiniiin g. It is based onf tile
fact t hat at step k , thle uiaxiniun number of fll-ins generated by) choOsing a '
as pivot is (r r- 1 )(c .- 1) . Here r.- I is the number of nonzero elemnents oIther

thlan a.. in the i- Ai row of thle'reduced mnat rix, aiid c j.- I is tile number of
nonizero) elemjents ot her than a. -an coluniniij of thle redluced mat rix. Mlar-
k owit z select-. as pivot eleiien t at ste(p k, thle elemlent whaic h an in 1Maies
(r.- 1)(c j- I1). Th e p)rod uct ( rl.- I )(cr.- I ) is the Mlarkowitz nuimber of elemenit
a.. . Iii wihat follows, we use thle Nlarko'.-'it z idea as a basis for tliv selectiona (if
a couliilat iIblC pivot set

Ili our first aral Is We C(Ifipa re I wo d ilfervnii sI rategies [or choEosinig a ".e1
of cOlinpat lle pivotS aa1iaoig all1 maximlal Coil)ipat ibles. In b~othI cases wev (-oil-

.sider ()ill\ t(lie sets (f maaaimi size. 'I'lla first st rat egy (called MIarko\\iti.
"111i1) (looses that ,et ailoiig all sets Of ulkiiaxiiniiia Size ill Which the( N11am o)r OWli

Niarko" itz iminber, (-f all its, veieeits I., iaaininiaiai. The prob~lemi here is t hat
Solil Of t lie- Iiv(jisM ill(-i set chioseni for reduicinag t Ie mat rix 11111a% gelivfat i

fill-ills In thle samle pos.it oias. aiid t hus we overesi aaaiat e tilie Niarkowit z counit
fr a p iirely- sequel iti a case. As ain alt ertat iv e, a second( st rat egy is eiii p l(ed

(called Ored Niarkmowiz). liere, losing the boolean mnatrix 11 correspond hiig to
lie sparsv iat rix unad er cons id era t iou, we counlt numanb er of ii(onz eros an a V ec-

tor that is the result (if Ming rows of pivot candidates in tile set and( amulti-
ply tIbis numb iiher by t liv numinb er of non- zeros iii a vector resutlt ing fr' iii (M)l~inig
olti iiis of t le pIot eiI ial Jpivots.

C'omapa risoin of thle above strategies oit our test cases shows thIiat t ie firs.t
ii llo I's 1 alImost a I way~s suple r ior. Ouar resutlt s s how t hat, in geat ra, I. )
mnnanizing thle Mlarkowit z sumn we alway-s get fewer fill-inis genterat ed andi~
ofteni more row~s are reduiiced in parallel st eps.. Thlis stuady li as shtowni thIaat thle
alitoult (4 parallelisma in circuit mnatrices is (aiite high but that, the genterat ion
of filIl-in terms is also quite hiigha in most. cases wheni complared to thle sequenci-
t ial runs onl tle sante mat rices. The numuber of potentijal pivots to be lpro-
cessed in parallel at each step seems to be so high t hat we could p~rocess fewer
pivots iii parallel iii a step wit hout limitiiig filie parallel work coiisidera bly,.
An experimten t to study this possibility is pertflrlieo by picking I hie 3n~ixii)nuin

sized set wvith minimum Markowitz sumi as was explainied above. This set is
lien used t~o reduce tilie matrix, with the following anialysis p~erformiedl oia thle

set of coimpjat i bIe p iv~o s
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-I kc rd hle pivot withi in ax iiin MIarkowit z counut anud deL eriinie
nu inber of fill-ins I hat would be generated as a result.

-patthe above p~rocedlure until no iiiore pivots can he discarded
froin the set, vit her because the set size is too smnall or because
all NI arkowit z sumns are zero.

Althlotigh the above anialysis of reducing the size or the set of compl dd
p~ivots was don)le for eachi step1, the actual ellimination and~ fill for a si(ep %%.i
done~ using t he mlaximlal co)iipatible with lo)west Mlarkowitz sumn. Ti'i s
anialysis i, rehealt d at each parallel step) and tilte results show that it I" ~i
ble to decrease thle generation of filiiis at this step signiificantly by) redutcing
hei( ainimoit of parallel %%(irk slightly. Ini fact, discardling only one cnpat lle

piN'ot resutiiIi a derease of at least about one third in the numiber (if fil-ills
Iia at )il(J be genera I( I ot her wise.

We performed thIis' analysis over all gene rated sets of comipat ilhe pivots
1lso 1i t .~eprmnw chose miaxuili sizedl set with ininimunin \Mar-

ko% itz sumn and iused It for reduciing the iat rix as (described below:
- for all sets, (if inatxiiniiiii size do

Iiiid thi )1() %itli iniiin Miarkowitz co)unt. andl
reni\ ve fr(i iii lie set.

- findi I lie setl of iiia~liini II( iiiisiead iiiiiin \Iirkowit z sumll
andl( del ermnie iiier oJf ill-iiis t hat %ould lic gecueraled
fromt thle proccesIiig of tils' Set.

- repeat t he abo% c

Simillar results were obt ainied by apphyinug thle above two procedures to o)ur
stiiialrices,. levnce, we will use t(lie first mtthod for the next~ phase. 'Ili:il is.

lie next analyi * ,Is 1 perforned oni thle set of inaxiiinuiii size and imiiniiin Mlar-
kowit z sumn.

Even thou gh the above experimnent shows wev can always genvrate fewer
fill-inls at a step by avoidiI1A tilt lie axiiiiuiii possible parallelim, it does, not
iui(licat e that tills \\ill nt dlay t(i gelieratiin o)f fill-iiis to later steps. Ili ioir

inext expevrimlent , wev (Iloosew tile iiiaxiiiiuiiii SiM' set w~ith Ii minium NIlai'kowit t

sumn, bilt tis tlime %v discard thle p~ivot with Ii iaxiintini NiarkoitZ z counlt
fromn Ihle set anlliist- Ilie resulting set for elimninal ion and fill generation. We
will ailsi re-peat the( previous anialysis by reduiicinig thle set size and (let eriniin in g
nu iii her (if resuilt in g fill-Ii fs. Th is work conIi niis on r previous resuli t HIMa by
discar1IdIIIg so()Ik f thle parallel pivot vandlidhtes accordling to their igh NMar-
ko%% iiz couint %%v decrease I lie total generat ion (if fill-iiis.

Results of Complete Analyses
A set of circuit,. to be simiulated by tilt SIlCI' circuit siiiiulat ion pro)-

grami is available as a bencliiiiark to test SlPl(E. We used these circuits as
in put to SPICE and generated I heir corresp~ond~in g mnatrices. T'hese mnat rices
are used as test. cases for analysis purposes. The first circuit is a simiple
differential pair and geinerates a 16 by 16 ninutrix wvit h 57 nouizeros. Thie
miatrices are of smiall sizes and thle size range is betweeni 12 by 12 to 2 I by 21.
The comiplexity of our algorit him to generate all possible mnaximial sets of comi-
pat ible pivots would not allow us to test larger miatrices, but thie general ed



in ifrimiat ion1 p ro(lI uces valIu alb Ie st at ist ics a bout1 1) aralIleiis in a nd( c irc uitI
mnat rices, .An algorithtm with t, lerable comiplexity to p~roduce a set of coiipa-
tible pivots %%ill inv olve e u rist ics; t herefore, 1t will not give tot at iiifori 3-

loll about te ie at rix.

The results of comparison of Mlarkowitz sum and Ored Miarkowit z stra-
egies are s I. n1ina ri z e( in Table 1.1 ( tab les are- prov idled in ajppiendix A at t he,

end of this paper). The first column describes the circuit, the ordei of the(
mat rix, and] number of nonzeros. 'I'lle secondo coluiu inidicates t he- parallel
pivot ing stepl. Columns 3 to 5 corresponid to the Miarkowit z sum st rat egy
decscrib~ed earlier, and columns 6 thlrouigh 8 co)rrespoiid to Ore1 Markowit z.
T)hie f irstI column for each algorit hin is tile i size (of t lie miaxium~ii set (If pivot."
olbtaiiied at a1 stelp, the second columiii s tile iiiti m operation counit
Obtiiedl for such a set, and thre last column s1)ecifies the numbiler of iiis

hat are generat ed as thle result of processing the( indicated set. (oumln ()
iindicates the( totnI numbiiler of muaximial c-ompatibles generatedl at each stel).
The lint t%%o ooiiiiii are informal ion generated b)y the SP~ICE programn
al~out t lie amuinit or filliii geuierated and the perentage of the matrix which
in zero.

A, (a ii be sel from t ilie table, in every cawe the( second st rat egy retult td
ii e'qual or miore filIl-fin, and~ equlal or fewevr parallel stp withI fewer numbier
of ro""s redulced. Ibis iniilcates that the \1arkomitz sumll is a1 better ieuiristic
for selectinug t le set of pivots alliug ninnyi mes. This cani be ob~served froml
the 16 1), 16 matrix of the diflereiitial pair (irclt. i the first step, with sets
of size six, N lark owi z sumn gen eralt d 6 HIIl-iiis "Iilile Ored Nliark owit z geni-
crat ed 8. The pivot set chosen by thle Niarkowitz siuii generated fewer fill-ins
han t he Ored Nlarkowit z algorit hm, and, as cani be seeni, thle Ored Niarkowit z

resl t ed in twice as many fill-ils as the Miarkowit z sumn and fewer pios M&e
p~rocessed( in parallel (w- for Ored Nlarkowitz and 15 for larkowitz sumn).
Thle sanic behavior resulted fromn thle ECI. compllat ible sCniITT triger circuit
\liich produiced all1 18 by 18 matrix. The niumbier of fill-ills at stepJ 2 o)f paial-

tel Iri-algumltioll is 10 for Ored Mlarkowitz and only -i for the Nlarko'aitz 51011

%it i none being genieratedl in thle next steps. Ored Niarkowit geinerated( I
moore fill-ins at step 3 ando was not able to find any, miore parallel pivot) ca uoti-
dates, but tile first strategy (oliiuedl to do one more paralle step. O[
course, thIiere are cases whiere b~othI st rat egies produced shn ilar or clope resuli ts,
as1 can be seen fromi the table. rthe table also inldicates that, i& parale runs.
ggenieratloln of fill-ills is mucll higher thian ill sequential ruiis of tile SlMI l pro-
grail). At thle same time it can lbe seen that the mnatrces generally (do not
b~ecomie dlense raipidlv, and parallel pivot candidates are available to almost
the very last steps of t(lie trianlgulation p~rocess.

The result of our1 next analysis is shown in Table 1.2. At each step, ast
of inaximinim sie and~ lidiininl NMarkowit z sumn is selected to reduice thle
imat ri x. F u ihermiore, froi t Iiis set we! rep eat ed ly reinov e a p~iv ot withI max -
iininli Markowitz count aild compIute the niumlber of fill-ins that would be
generated if t his set were used to redluce thle muatry. As (-ai be seen fromi thle
table, ini eery case it is possible to reduce nu lmber of fill-ins signific(anlt ly b~y
red ucinig thle amnounut of parallelim siglit ly. For examrple, for the 16 by 16
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iiit rix %%it ht 57 noii17ero-,we ci(n1 see t iit ir we reduice t lie niniber of cmiiplat i-
lWe iotsrroiii 6 to I by reilioving thie two p~ivots witl Iihighes.t Mairkowit z
count fiiront thle set, we c-i p ~reventl genietrat ion of miore filIl-ins. Also ini iii
last 2 1 by 2.1 natrix wvit ii 158 non zeros, we can reduce thie number of geti-
Prated fill-ins by a fact or of 2 (front 40 t o 20), if we discard two pivots in stepj
oine in tHIP samec fa-lhion. This is a general result thiat can be observed front
the table for all cases andl all parallel steps.

lit the next exjperiiiient we confirm thait it is possible to reduice the( total
gei (rat joj of (ill-iris, as oppjosed to just -it eachi step ,by using fewver t han (t he
ninxiiiin imnier or comnpatible pivots. In every casev we hiave b~een able to
re(lui(e I lie tot :l nuiiiber of fill-iris by Somne fract ion (at lvast about onv. O iird ).
(oiuil1iaredl to Ilie( case whiere maiu prlels as ('inplloy(' . 'P'lies''
r tVilts11 are simini atri zed in Table 1.3. H ere we chiose to dIisca rd a pivot froiti
IL'c manulonupatilble set according to its highiest. Mlarkowitz coutt. If thef

liln~iml touid nuot generate any fill-inis, because of a zero Markowit z S11111
N' dhidl nit (liscarl nn pivots fromn the set. Th'le total wnmber of fill-inis ge-it-
eril ed for lte first mat lrix (16 by 16) is 2 whichi is one thiird of te uiiuomit
gencrnt ed Nvit h our first experiment, (6). Thlis nii uibler "'as re(luced fromt 10 to
26 for thev case of I lie 2 1 by 2 1 maltrix wit Ii 15 1 uonzeros. lit t his ceI lie
riiiiulber oj paurahb'l si ps wasJ increased froiui 5 to 6, but I lie total mnibvlwr o
rofms t lint could be reduiced in t loest eps reiinued couistint . lit fNct. in inuost
cc~s. tlie imnubuu)r or paral)'l to'ps is iuncrens('(. hut thev total mnuiwr oJ

Pji'ot's thait could be proces-sed lint Ili 1.e sl eps does not clitauige m I (o
(Fiin igi' is greater im on 'e addit ion oir rv'(ltct in in Iic jinmbr of r(1ic(l

Generation of Compatible Sets from the Incompatible Table
It is (lear t hat in lairge sparse circuiit mnat rices lte number of possible

Jpi%(3t toi bv proce--s('( at eachi step wvill be mutchi highier thain our sial examn-
lple rnt rices, and theirefore, it wvill lbe possib~le to ob( amn enotighi parallel wvork
bY vJust c-onsidering a subl-iin\iuual set of 'omlpat ible pivots at eachl st ep. Th'le
alg-orit tin (lescrilbed involves a comiplete binairy tree searchi and hais exponeni-
hal c( ;vxi in t lie order, it. of the sparse mnatrix. lin order to comeII( upl

NO ! t h ' .od hieuristic, Nve needl to relax the reluiiremient of finding lte niaxi-
111:il , .t colipat ille pilots wit i inimumiii Miarkowit z sumn. As a contclusion
frotu. lli, "u )ve anialy s is. we willI litave to redii cc I lie size of thie set to d Iec rease
lie -one, .-; ion of fill-ins. IKe-picg thevse problemns in niflnl, an accept able set
\%0111 be one whiich hias aI large numnber of pivot candid ates, for parallel pro-

cessinig and a low enotigh Markowit z sumn. We now need to look for a p~ro-
cedl tre whichi tends to produce a nu niber of comipatible sets of reas;on ably
laqrgf, size andl low Miarkowit z sumi. haiving generat ed suchi sets;, ive can then
chloose( I lie best c'andidate am1ong thiese coinitilile sets uising the saecri-
ter'ia as before. In Nvh at follows, we Av'ill describe dIiff'eren t issues iiichi will
lead its, to a good hetiristic algorithmn and a set of paramieters to lbe it-s(l( in
rad ing off bet ween ill-in generation and ltIi size of thle set of p~arallel p~ivot
a 3It d i dat I s.



So far, the information from thle incomupatible table has been uised to

cotist rict the maximal compatible sets of pivots in a complete lbiiiry tree
search al~gorit fun. A more careful analysis of tilie if] Coil]Jpit ibYe table could
provide a set of cominpt ille pivots wit houit thei'i need for searching thle tree.
As we know, thlis; Ible gives informat ion about thle incorupat ihe pairs of
pivots. Ili other words, by hook ing it colujmi of tflie t able corresponidingr to

Pivot i, we Obt a in all p~ivot numb iiIiers j > Iwhe(re pivot j is in comnpat iblhe wit h

pivot i. for a given oridering of thie mat rix. Note that we are assuming pivots

are t keui from the diagonal of thle imatrix andl they are numbered I thlrouigh ni

corres pond(inrg to ro s I tbrIi T 1gh n of thle i at rix. Consequtient ly , if (olmn mu
of the table is null. thlen tlie corresponditig pivot number i is conit ible withI

cvecry pivot whIiose cor res pon dinig colutm n 'lies lo ftlie right of colun i iHien ce,

by' scanining tilie incomipat ible t able, we can fiil a set of compatible p~ivots

Who,,e correspondhing coliinsii in thle talhe are null. (Clearly, pivots withI such
a pr)rrI are (on) 1 Aible ainlcain be grou wdl iii a coiipaible set. Usinug Ili,-

rvpresen(iitation of t hi( incoiat ible table dlescrib~ed earlier, the aloepro-
ci'(huire (-iil be formulaited as:

scan bmp/b! froui right to left
for each columni~ i of OIji)ItbI (10

if ( I'ipb,. ik viijty) then
(*audd I liv (e()rrc',jpomIiing piv'ot to t lie set (if compat ibles*)
comnp.-zf = rom~p.sel + fi)

Nhe(re comnpsel is tIlie set of comipat ible pivots whose corresponding column,;

in the( table are muill. Now If there exists, a pivot k such that thle set of pivots-

MCiricor ib de wit h it in column k of tilie tab,v is dlisjoint froii t li(, set (-f

:lronadv coiist ruct cl comp~latible pivots iii cornpsr , thlen k is, comilut lible %it Ii

evrr pivot in comnpsef . TIherefore, we c'all expanjd romp.sel by add~ing K- to it.

Tble a ive proc eduiire can noi% be ) coimp~letecly desc rib ed as:

scanl imptb! from right to left.
for each coliti n i of imp/b! do

if ( 11111b!, n comnpset - eruptv )thlen
( *add( ji] to the set of compat ibles*)
comnpset = crnipsqel + Iii

delete row i of imp/bl
end

The compatible set, cornpsel , produrced byv t hiis procedutre, wvill be referred to
ais an ord ered crmipat ibl set from now onl, sit)ce it is oh tiaine hN. bIm posiniig a
spec ific ordering oin filie diagonal elements of th li atrix to get thle incottya i-

Ide table. As ill examlple, tile incompatible tab~le of matrix A2 in Fig. 2.1 a us

given in Fig. 2.1 .1). Thie compatible set. corresponding t~o the null columins of
le table consists of piivots 10 and 11. This set consists of 2, 10, and ii after

the above expanision.

As was explained prev'iouisly, our st rat egy for selecting a compatible set
amiong all possible compatible sets, of eqiual ma-.ximii sT ize was to select tilie
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1 2 3 4 5 6 7 8 0 10 11

1 x
2 x
3 x

5 X X

6 x x
7 x x x x
8 x x x

10 x x x x x
i1 x x x x

Matrix A2
Fig. 2.1.a

.3

4
5 x

6 x x
7 x

8 x x

10 x x x11 N N ~ L ~1 1i
ilx x x x x x

1 2 3 4 5 6 7 8 0 10

In(.omlpat ible rable
NitiI columns: (10,11)

(Compset: (2,10, 11
Fig. 2.1.b

one with minimn Ntarkowitz sum. That. is, to seler.l the set in which the
simr or Nlarkowi71 numbers of the pivots in its set is minimum. If we consider
the set of conhpatible pivots constructed above directly3 from the incompatible
table, we see that it consists of pivots 2, 10, and 1, which in turn have Mar-
kowitz numbers 0. 4. and 12. In general, we would like t.o have a compatible
set consisting of pivots with as low Markowitz numbers as possible. It. is also
clear that pivots mit h low Markowitz numbers generally have fewer incompa-
tibilities. Moreover. by looking at the incomJpatible table of Fig. 2.1.b, we see
ht comp.atible pivots 10, 11 are obtained from the right end portion of tie
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1.able. ]'Ilk Is 11sally% tilie (.Ise, since Is Ave Cotist rlict co()luiiiins or tili- iii((Oillp:I-

IlMv I) Il e, %%e nare l eft wit Itia small Ier su I)li t rix t o work withIt. 'I'llit.. i ft er
C"Iiiplet ing eaich colimin, we have fewer imeortipat ible's leftl for thle cmttruc-
I i( II tilie II ext (*(hi i itl i ('Ilse observ a lions len ( ii-, to utse a di Ifer ii i ord er-
ing iii wich tile first coluii of tile' incoripflible table hns thle itia1xiriim
iluit~wr' or incint ibles aind ais wye work our way to the right end of f lie
table. tile nuiml)er or incoimpatilbles will decrease to the minimum. Such lin
ordIering implies ft(i resulting inlVomplift ille fnblle will hanve more nill (Iimilfs
clusteredl at the rightf endl. So thle ordered coiljpt ible set thant ca, lbe (.Oil-
st rticted from I lie- ordereel table will be of a lairger size ind smaller Ma;rkowit z
sumil Ohan ft(i results (of fte above proce(lure. As a result of thiese argmitpt.
wve sort fiptI pivot in ordler of d('(Treasing NI rk owitIz itin hers. U sin g IbIiis new
ordering, we cart uinst ritet new iwcomnt ible table wvit Ii tile first columil
corresponiding to thle pivot i jilIi IIigli est N.Iark owitz numinber slid filie last

1111correspond(iltig to tilie p ivot wit 11 lowest NInark owlitz numbn er. As aiil
exatti1ple, tilhe NIa1rkoN~itz tin t11urs aid( th litie\% ordering of f it', pivots are
shown ill Fib). 2,2.,- for iat rix A2 of Fig. 2.1 .a. Thle corresponding ordlPred
inmpatible t ablle is given in Fig. 2.2.1). It can be seen from Fig. 2.2.1b IMa

hie collect ion or p~ivots correqsponding to null Coluimns of thle tale] gives a
(0nllpat ible set of size .1 -iil Niarkowit z sutm -1 cowiistitig of pivots 1, 2. 3. aid

I. his is lin cominprisoti wit Ii set of size 2 mid Nfirkowit z smrr U; a-('rifIed
from t lie imordlered ' eoniit ible table of Fig. 2.1.1).Aft er epn~imllilg this,
sct. we lpro(lttc( a (omtiblle set of size 5 miid Mnlakowitz sum11 16 colii tiiig or'
p)i vot Is I., 2. 3. 1. 1 nt(1 9.

Limited Binary Search Tree
lit tfill, isect ion. we will combine thle idea of an ordleredl compatible set

wit h t Ili eftree sea rcli a lgori t im dIescribied earlier to obta in n li mit ed t rev

Pivot Nfirkowit z OrderNutiiibher _____

10 9
2 0 11
.3 2 8
1 2 0
5 210
o 4 7
7 3 3
8 0 -1
0 12 5
10 4I 1
11 12 2

Fig. 2.2.a
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II x

8 x x
10 x x
70 x x___1x x

3 x x 1
3 xx x x_

5 x

2 x II

90 11 8 6 10 7 .3 4 5 1

Ordered Iicoy I IIpa I ih11e TaI1)1e
Null colimins: (1.2.3j1)

Fig. 2.2.1)

se:Ircll: I (T f)rit liii wnhich jprO lc('S -I w-l(V'~ IlliP set (r (Ohilt il~e li)ifs for
ree'lI'iciirg v li~rlrix. Gen aSet of ill pivot eleiviiiis. we can now dlir'ct ly
produc t, a set or comi t ible pivots from thle orde(red in comipat ib le tab1)le. nfl i

oidrel PIPl 011 ) t ille set is 01) ain ed for ( lie initial st rt ig set at lie root or
he limarv search tree. A ch~ildl set in the tree is a subset or itF parent set. Ini

this context. every set at. anv given p)oint inl t he tree has rew~er pivot s t han
he root set. Such a set could be conlsidlered as, a st art ing set itself. Provided

we could( p rod iie fcile correct in compatible t a Me for t Iiis set , we couild gen-
crate its correspond~ing ordlered compat ible set directly from the new t able.

The iricoit ible table for a given startinug set, Si is tile origiial table
wvithI t Iiose rows in 11(1 irm iis e rs Oi(i gto ( lie p)ivot s a bs'nt from S.
eiminmle(l. ir we let s be tile iit ial set. of all pivot candhidat('s in thei( sparse
mat rix nnl .S. be)(* an rbit riry starting set, in tile tree th len thle ')rocediire t)
obtIa in thle ord (,(,d coni atib Ic set. for S I , r onpsci~ from an updated and
o)rd retl inc U'm ati b e t abl Icicn be rep resen t~e( as:



I. cr pe empty
2. le S = Si
3. for j n down tolIdo
4I. begin

5. if(je S,.)then
6. begin
7 . tenipset = tiympibi. less

8 ternpset =terlpset n(1 conlpset.
0. if ( tmpse= enipty ) th li
10. coinpset1  comipset, + i
]I. end
12. end

whevre less is the set of pivots absent from S.. Line .5 allows only t liuse
c~ltf orl ofilhe incomiipt ile t able whiose corresp~ondinlg pivot j is in .S. to b~e

tv'*t ed for ft(e compa)t ibility~ relation. Set less is used in line 7 to ehliite
rows correspoii d ilia to thle absent pivots in S.. cornpset. holds fte ctirrvn t set
of compa~ft ible pivots A. check for a new pivot being compatible wvithi t hose
alrendy in coinpset. is m(ide iii line 9.

It I, iio%% possile to produce in ordered compatible set for an%, set at any,
arhit rr~ poin in tl~' tree(fired lv from (fte iicomnt iIle table.Gie a

sta~rit iag -:(t . our met hod o)f p)roducing :ii ordlered1 comiiptible set tend!, to gel)-
e ra t a Ina g set ofr'' i\ Lirko'i iz su m. Tb us, we call prod u ce a niim her of
(ordv(red( compat ible sets for many starting sets at different points in tile tree
and cl~od', flhe best ca:ndidate among them to re'j'uce tile matrix. The follow-
ing, t heoruin will iliminate or some of tile redulndlant work.

Theorem
AH1 ordered compatible sets derived fromi the starting sets in the biniary

search free wvith level L-1 or less are included in the ordered compatible sets gen-
erated frmn:u the sets at level L of the tree. (i.e.. it is only necessary to gencrate
ordered compatible set.s for startinyg sets at level L to cover those at level t<L.j

Proi of

Let S b~e the init ial starting set at lte root of the binary tree consistingr
of A pivots. F'.1-1 . Let so. , sl e the left and right children of S . Let
cornp.set beP the ordlered compat ible set obtained directly from the incompati-
ble table for the set .' . Similarly, let compset, and cornpset, be the ordered
comnpat ible sets corresponding to S0 and S respciey0 pctvl

A pivot P. can split a set S ill:

I eS and
(set of incompatibles with P. ) flS *empty.



.A';S1iiie P . splits S into So and .S, ; thenl:

.50 =s - (set, or inicompaj):t iles with 1)) a it1(I
SI = S - IP i ..

There are two cases to consider:
i. 1P. not in) cornpsel

The table corresponding to S, Consists of thle same nuill colum ins and]
compatible pivots as, in cornpsel so:

roinpsel = comnpset1.
ii. P'. e comnp.set

wr1(I '"1 111t have:

iniplbl1 , nl conipsel viii py

.1 1(e Piscon'aible with all pivots in romnpscl .In this case, roinpsl
Obtained front SO is eqjual to cornp.qef We know P.) is in the set So and

liint tile incompat ime t am~e for so is tile samle as tilie table for t he parent,
set ' wilt h Iose rows art d columniIIs coFr's poii ding to in corn,ti ) i s or i'.j
ehliited. Thuls, all1 thle compaitible informat oll wvhich resulted in p~ro-
duct ion of cornpsef is transferred front (lI(, 1pa rent set S to S50 and llfse-
(ilI en t lv:-

Corn psel =Coiiipsel0 .
Tile aibove argi iment proves t hat., at level 1, one of the sets So or .51 will

produce i lie same ordered conipat dde set. as p~roduhced by its parent set. Tlhis
proof holds for any two children of a set. In other words, at any point in the
tree, an ordered compatible -set corresponding to a parent set is reproduced
by one of its chiild ren.

Iiidluct ion onl level verifies t hat genterat ing the ordlered compatible sets
ror vvery set front the( root t hrourh level 1, of thle tree does not prodhuce any
iore in form ation thiani p roduiici ng I lle ordecred c)m pat i ble sets for cvecry set at

lee , onlv.

.As a consequence of the theorem, we generate all lte sets at, a given level
in thle biniary tree, and for eachl set, we producte an ordered compatible set.
from the ordered inicomplatible table. Among tilie generated compatible sets
we ch~oose the set of largest. size and lowest. Nfarkowitz sum to reduice the
matrix aiid call the the resiflting set the elimination set.

if we note that we split, each set. at each level of thle tree for a given pivot.
according to its in comnpat ibility information, theni generation of the starting
sets at. different levels couild be done in variouq ways:
i. We could split the starting sets uising the original pivot ordering given by

the input. sparse matrix. This would generate completely raiidohom
results-.
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ii. The sa me ordecrin1g used to order thle inicom~ipat ib)le ( able con 1( be tised to
sp~lit the sets. This left to right ordlering does tiot seem to agree %%ith our
low NMarkowit z sum requirement. At each splIit (level in the tree), wve
in cluide one of the pivots, say p.j , with hiiigh est n timber of incoi t illes
high est NIark owit z niumb ler ) ini thle left subtree. This in cluision also

mecans we taike a large nuiimber of pivots in compat ible wit-h pout of t he
sets in thle left subtree. These pivots that are ilicomittible wvith p. ha Ilve
lower NIark ow itz nitmb ers t hin p a nd couild( t hem selves be comnp at ibIe
with I some ot her elements in thle set.. As a result , t his ordering %%ill pro-
duice a left set considerably smaller iii size thian the resulting right set.
Moreover. filie left set cont ains pivot s of high Nlarko,.it~z number wh ichi
Nvoit 1 produ lce mny fills if uisedl to redl tce f ie( iiiat rix . 'lTherefore, someW
of (fhe large compitible sets wvith small Markowit~z sums cannot be gen-
eratedl from one of the sets in the left siibt ree unless we search very dleep
in filie tree. Inlii is case, the dlesiredl compatible sets would be in one of
thle right subtrees.

iii. A third alternative wvould be to split the sets with pivots in increasing
order of their NIarkowvit~z numbers. or course, in this case, the iticompa-
I ihilit v informat ion of tilie pivots used to split a starting set. is taken from
the right end of the inrompat ible trable. Thus tIhe complete incomlpat ilil-
it v in format ion for a pivot i is oh t ain ed' by concat enat in g the ( row and

co iJi) of Ilhe t a h I. Thliis pirocess,. seens to give a biettIer haIiinye to thle
b~inary tree for filie first few levels used to generate the starting sets
requtiiredl in on r algorithImi. Fitrt hermore, it has thle property that does
riot ignore p ivo(ts of low NIni-rk ow itz tinmbers.

The high level description of t his algorithmn is given belowv:

Programi Parallel Pivot in g
- calculate Markowit z ii imbers of pivots in the

remaiining unreduced mat rix.
- SORT pivots in decreasitig ordvr of Ni arkowit z iln )nbrs
- lrodlicee all start ing sets at level I TlEVl'l, tnkinig the

pivots to spilit the sets from the root to 11LAVEl, in
order of increasing MIark owit z mnttiiers.

- for vicli set. at. IAT.1,l prod iie a ii ord eredl compatible set fromn
ihe upda(Ited ordered iticoit ible t able.

- amotig thle ordered comitible sets genieratedl above choose the
maximumi sized set with inimumi Markowitz sum (Elimin at ion set.).

Here, ULLNEIJ, is a preset level number itndicating the depth of the tree to he
searched. The algorithm is no lotiger exponentiatl in time. An effcient. imple.
menittion of tflie requiired sort atid set operat olts are important faictors ill
efficient execution of the algorit hm. The set operat ions uised in the construc-
ion of the itnconipatible table are of order I (additng anl element to the set. or

a test for memrbership). The incompatible tanble can therefore be constructed
in time nz, where nz is the number of nonzero elements or the matrix. Cen-
erat ion of an ordlered compatible from thle itlcomit~ilble table requires scan-
niteg n sets corresponding to the (oluitmis of the table, and performing inter-

set ontd-differetice operations onl the sets. These operations are of order n



Wit i, a conist ant factor eq(uial to t Ie( inverse or tilie iiler or bits per (-(iti-
puler %%ord . iThe set oper~atin ii5are usuially impijlemienited in inicliiie language
or iniic ro code ind1( thu l hi5 iave a smTBall t inie fact or. They (Vcould 1 )c onisid eredl to
have -a constant time (rather than order or it) comtpared to (lie time taikeni to
execte a Itigli level language statement. Prod uct ion of ill stanrting sets for
level U LEVl1l, takes a const ant time. G;eneral ion or ant ordered compiJatile
for each starting set at lJLENVEI, takes aI constant times n is explained above.
For rensonalble values of ULEVEL, all ordered coiitatible sets can be derived
in parallel for different starting sets. In the niext sect ion we will see that goodl
re tilts are ohbta in ed for small, constant vallues orf UlLNEL'~. comnpa red to in.

Thiie corn1p lex it of the algorit tim is bounded above by thle sort ing algorithm.
Tlius, employing an efficientI parallel sort would improve tile performance of
fte newv algo~rithim.

Balance between Parallelism and Fill-in Generation

Even thlouglh the above procedure tends to produtce large sets of low Mar-
K-owit z sum ns, wve still could optimize the generation of fill-ins by considering a
su bset of the elimination set. That is, there couild still be some room for trad-
in g off bet weeni parallelism and fill generation. To accomplish thiis task, wve

ieelto v'om e it p withI pa ra met ers to contIrol thle nuiimber of p~ivots5 to be pro-
'WSs Id in parallel and thle ii nmber of fil1ls to be geiie(rat e(] . One suclh pa ra me'-
Ifr co)uld be f lie size of the set of compat ible pivots. 13v allowing a perceiitage
4f Ilie sef to 6eC disca r~id, we can conrn t rfhle thle 1111 nber or c'ompa~ft ile
pivots to a (degree thfat does not limit our pa rallel work by too much. For
('Iaritv, tis parameter is called thle shiriniiage piarailiet er and is use(l as a1
h 'wer limit to shtrink the eliminitationt set, by a percent age of its size. A
differeint parameter could be an tipper limit on the size of the elimination set.
This limit would allow just enough work to keep our parallel processes busy.
or course shrinking of the elimiiiationt set inust. not be done arb~it rarily I))
throwing pivots ottt of the set. In general, wve wvould like to shrink our set by
(1isvardlinig p~ivot s 01i a would cause geoirt iou of many fills. Suich pivots tend
to h~ave htigh Nfirkowit z iiumbers. We already )lave pivots, ordered accordintg
o their Miarkowit z itumblilers. We coul d use I Iiis ordlering to scan pivots wvithl

highiest Miarkowit z witiber in the eliminatioii set and test againist a threshold
vahle'. If pivots withI Mark owitz numbhers greatIer thain a thlireshold exist a iid
if mi r shtriuk age pa ramet(1er allows, t hey are d iscardIed from tilie eliiit tion
Set. U se of a t hreshioldl value wvill allow uts itot to shirink a set. I ha cotnsist s of
all good pivot candidates of reasonably low NMarkowit z niumbers. 'lo serve
I his purpose, thle threshold value should be set iii comparison with low and
high Mfarkowit~z numbers of the pivoting elements in the matrix. Again the
ordered Markowit z numbers of pivot~s can be used to set such a threshold
value conveniently. One way is to specify a fraction of candidates to be dis-
cardled from the elimination set. Consequiently, we set, the threshold to thle
Mlarkowitz nuimber of a pivot in a specific position in the list of pivot ele-
ments of the unrreduced matrix (ordered by (lecreaqing Mlarkowitz numbers).
Any pivot, above this point, in the ordecred list, is considered to have a high
Nlarkowitz number andl therefore is a canididate for being (liscarded fromt thie
set. atid it), pivot below this point is considered acceptable.



Pivots ill ft(e elimination set ire scainned in olrof their highest Mar-
ko" it z number. If n pivot withI Mirkowitz numtber greater thin Ihle thbres-
hiold exists and if thIie set is not aIread(1y of in ii lt iin size, it is (Iisca rd ed froin

hie set. Tile process is repeated util ei(it her no mnore pivots of large, Mar-
k owit z numbhers ire left in tlie set. or t he set can not be furlther sh runuk. In thle
next sect ion we p~resent file result of different st rat egies and various parime-
ters dIiscussedl here for a niumber of te(st maitrices.

Analysis of the Result~s
The compJlexit y of thle bin ary tree search nlgorit hiin to ob~tain maximal

compJ)at ible sets was sucli (lint it could( not be run to cornpletion for a 38 by
.3s mat rix. Fo verify the validity of our heuristic p)rogram, we performed
every analysis dlescribed in this sect-ion on thle small test matrices of Table
LL .1 Recall tOlt ilhe new algorit lin produ ces a nuiubcr of starting sets for a
gTiVen level (1 1 LXEL) of tilie binary search tree. For each start ing set, an
ordlered compj)at ible s('t is prodlu ced . Anion g thle gen erate(] ord eredl coinpat i-
W~e sets. (lie Set wit h inaxin ii i size ain d in i inin Ma rkowitz sui is select ed
as thle eliinrit io set at that parallel step. Two alternative ordlerings for
gemilaIion of st art iiig sets at t JLVL were dIiscussed earlier. For simiiplicityv,
%V (1.1 (al tip algoritlhin to reducie a sparse imatrix by comnpat ible pivots, using
the ( dcreasin g ordler of MIark owitIz imiin hers for st art in g set splitting,
l)( OMIP. Sinil y thle a Igorit Iiin wh ichi uses thle increasing ord er of Mar-
kowI( z niriuibers is called I(OM1 .

Dltailed iiifonuinition produceed by l)COIMP and ICOMP are presented for
three spar-se rnt rices ini Table 2.1. ('ohuirnn one of the table gives a descrip-
iolt of the sp~arse runt nix tindcr consideration. C'olumn 2, specifies the paral-

He step. Coluumns .3. .1, and .5 give tflie number of compatible pivots in tilie
eliiiation set, its Ninrkowitz suim arid nutmber of fill-ins generated at1 each
step for program 1)CONIP. Similar inforinat ion is summarized in thle next
th ree columns for program ICONIP. The inforniat ion presente(d here is for

I ~TVl~ 1.The first two mantrices have been coimpletecly analyzed in the
previous sect ion and] ire presented here to show thle validity of our proposed
alg-orithims. It is initecrest inig to see that, for thle first matrix, DCOMIP pro-
dutced exactly thle samne results as, the complete t ree search program. Onl the
ot her hand, ICONIlP produced (iffnrent results,. Even thbough 1('ONP pro-
(Ilies a smaller compatible set in tlie first Opep. it finds larger sets in tlie next
steps aitd reduices f lie same number of ro"'s (i.e., 21) in five parallel steps.
ICOMJ' generates 22 fills, almost half file nulmber produced by DCOMP (10)
or even thle comptllete binary tree search algorit bin (410). The same behavior is
observed fromntilie second 2.1 by 2.1 mat rix. The thbird mat rix is obtained froml
lie circiti of an 8-bit, full adder and is a 1.1- by 144 matrix with 616

11011zeros. Note flinat both1 algorit hms prod uced an (elimin ation set of 72 pivots
il thle first step, and so, half of thle matrix can be reduced in parallel in one
stepp. In this case the advantage of ICOXIP over DCONIP is not significant.

To see how variation of (lepibh will affect the resulting compatible sets,
we ran bot h programs for values of tUlSVEL~ bet ween 2 and 5, for a number
of mat rices. These results are summarized in Table 2.2. Again the first
colimji -describes tilie matrix. The second~ column specifies UTLEVEIJ.
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(dliins 3 to 6 give related inforinat jol for tilie I)COMII programn. Ilere thle
first ind the thIirdl columns specify fltinil)r of parallel steps taken to reduce
lie mat rix ind( numib er or rows reduced iii those st eps, resp~ect ively. The

seCOnd columin is the average parallel work at each step and is obtained by)
dlividlin g tot a Ili number of rows red ii ced in panra llel by thte numbn er ofrJ para lid
st eps. The fourth column gives the total numnber of fill-ins getierat ed by
parallel rediiet jol. The next four coiluins of thle table provide similar infor-
111 ttoit for thle IC N )program. The last t wo mu at rices of thle i able are p)ro-
d1ucedl from I he SPARI program, which is a sItii ral an alysis programii [12].
The (se two thatrices Itave a pcuiIliar block st rutiutre. Ouir in itijal ob~ject ive was
to st ud y sparse matrices arising from SIPICE. These miiat rices ordlinia rily itave
a randmiln sparsity striicture, i)ut at the samne t imne, thle limited conn iect ivityv
ibet ween nlodes of the input circuit results, in a limited numlber of nonzeros per
row/coti inn. The SPAR mat rices w~ill provide some insight into the behavior
of our lieurist ic a Igorit Ims for a wider class of mat rices.

It is clear from tile table that., in almost every case, ICOMIP produces
better results hothl in terms of number of rows reduced in parallel and
11 iitbrr of Fills genierat ed. As was expected, D(OMII finds elimin at ion sets
of lower Miarkowit z stunis as we secarch dleeper in thle tree. This is observed
from Ii c~first 21t by 2-1 mat rix and from) t he In:st SIPARI generated 505 by 505
in i Itrix . litfthe first mantrix, lCOMPl pro~hic('d 19 fills, reducing 21 rows ill 5
paallel st eps, whtile l)( OMIP general ed iior'e than t wice t he numbi er of fills
311(( reduceed 20 rows in 5 steps. The nitiiber of ills decreases for l)(OMP as
I 1LLVE11. is iltcre3-ed , while ICONIP takes t(lie opposite direction. This also
shows that reason ably accept able compatible sets, bothI in terms- of size and~
Niarkowit Zstill. are generated for small values of ULEVEIJ and it is not
necessary to search very deep in tilie tree. Tile above ob~servations hold for
every malftrix presenlted in the table, except tile 78 by 78 matrix produced by
tile SPAR proram. This matrix doe" not have characteristics tyvpical of
SPIC:E generalted mat rices; biut, as we will see in otir niext analysis, accept able
resii ts are Tpro( tcedi for this mat rix as well. Note fliat the re are cases for filie
I)COM1P program ill whtichi a higher average p)arallelism is indicated in thle
able than for ICOMPI. In those situations, it is often tile case that fewer

rows have beein redutced by DCONIP t han by TCONI1.
Trhe remiaiing analyses are performed onl thle ICONIP programn only,

sin1ce it Iproditce bettIer results. in whfat follows, a value of 4 is used for
I TEVI;L. Th'e ntext -,tell is to0 study the effects of varying the parameters pro-
posed earlier to obtain a balance bet ween genierat ion of fill-ins and the
aliuloitt of parallel work. Results are stimmnarized in Figures 2.3 to 2.6 for
fouir of the mat rices of Table 2.2. fit the-se gra~Ips, four differellt symbols, are
tised to representt four differenit valuies of file threshold parameter. Recall
t hat t he thIreshold is set to thle NMarkowit z number of a specific pivot in tilie
ordleredl list of pivot candidates. On thIe graphsi, thle thlreshold value is givenl
as a fraction of filie pivoting elemuents in the remaining unredutcedi mat rix,
ordered in order of (decreasing Markowitz numibers. For exatmple whenl the
liresilold is 1/3. thle Mtarkowitz number of the pivot. residling ill thle 1/3 p~oint

of thle ordered list of pivot candidatecs in the unrediiced matrix is obtained.
Atny pivot ini tile elimination set withl Markowit z numb~er greater tian this
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value is a candidate to be discarded from the set.

The graphs present information about the number of generated fill-ins
versus the shrinkage parameter. In each case, the analysis is performed for
threshold values of 1/10, 1/3, 1/2, and 2/3. For every value of the threshold,
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co,,ii,)atie sets consist of pivoting ceements or lower Markowit z numbers
thian lie hiighest one tenth. These graphs show more variation withI the
th reshold parameter, even though a hiighier nu mber of fill-ins is produced.
W\ithlout except ion, the fewest fill-ins are produced for the largest values of
lie th reshioldl a nd the shrink age parameter.

The imi wer of fill-ins prodluced by J(ONtlP comiii~res reason aly withI
sequent ial runs on thle saiie mit rice-, . : or examiiple, tht(- sequentijal ru (iii the
S-b it fuill add(1er iatrix p~rodu'ced 1 66 fills, aii d ICON! [ produicedl 106, whiich is
in in~crease of abouit 18'%. In general, a-, exp~ected , thle numb~er of fill-inus pro-
duced by l(ONIl' is higher than tlit( sequenit ial results, but thie difference is
not great.

Conclusion
Solittion of -sparse syst ems of equiations is essential in many apjplicat ion

programs-. Oft en such a syst em Iias to beC solved repeat edly. In this paper we
verifiedl that iii slparse matrices arisiuig fromi elect ronic circuits it is l)oS,.,il)l(' to
(10 compumt at ions olnimnny diagonal eleiien ts simlu !ta ii ously. A (comp jlet e
analysis of sonme test mat rices, done by genierat ing all maximal compatible
sets of pl) elemients, ind~icatedlftle existence or marty corupat ible p~ivots in
hese in at rices. We hiave shiowni ouir te(st iit rices (10 ii ot. becomiie fmull duiriniig
lie (1ecompos~it ion . Fuir thlier more, it wais shiowni thIiat iiny lp ara Ilel cornput a-
t011 step'js are possb Ic, an rI duim iig t hes e st eps, tilhe it rix is oft en reduicedl
coinp letecly. The ( comnpet in g issuies of parallel pivot ing and fill-in gen era tion
have b~een studied, and we verified I broughi exiiipies thait it is poss,,ible to
red iicc thle prod uct ion of filIl-ins by removing sonic orftlie parallel pivot cand(1i-
dates fromt t he elimin at ion set on thle basis of hiighi NMarkowit z nuimbers. A
lieurst ic algorit Ii was thlen proposed to produce large compatible sc s of low
N larkow it7 S11111 b)% a colib inat ion of an ordleredl part ial ftree sea rchI st rat egy
and g-eneration of ordecred compatible sets. lDiffervnii ordIerings to pro ilci' Iii (
ordr(ld rrl c nt ible sets were suggest ed, aii d thIieir anlvant ages and disad van-

aiges %%ere dliqcussed ad yerifi ed t irotigli thle shi tlatIed res Ilts. A mim nber of
par aimiet ers to p rov ide a b )alanrce hietweeri gf-itera tion of fill-ins anud thle
amiount of p' rallel work were suggest ed, and their e-ffeet s were det ermimied in
flie simudlted resulIts.

Thle incomipatible table required by the algorithm cin b~e consti-ructed in
imne nz (number of iion zero elements of thle mait rix). Production of starting

sesfor a given ULEVEIJ takes a const ant time. For ULEVEL small and con-
st ant con-ired to ni, generation of ordered coiit ibles from starting sets is
of ordler it set intersect ion and difference olperat ioiS. Assuming Oficient
iiiijleiiicittion of tilie set operations is avilable, Ilie heuristic algorith1m has
a1 coliplexit y bounde (ld above by thle sort ing algorit Iiin required iii the pro-
gramn. Thuis, employing an efficient. parallel sort. program wvould improve thle
total performance of thle new algorithm. Neverthieless, our results shiow that
many comnpatible pivots are produced for parillel reduction of the sparse
mantrices, and the process can be repealed unitil thle matrix is almost. comn-
p~let ely redluced. In cas.es where the iat rix is not completely reduced, tilie
remaiining submuatrix is of such a small size fithat lparallel operations have little
effect. Significant. reduction in generation of fill-ins is obtained by varying
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the proposed parameters. Moreover, as the result of these pliram,,lers, a
better bilance between tlie number of cOmpatible pivots generated at
different steps was achieved, while the reduction in parallel work proved to
be insignificant.
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Parallel Pivoting Strategies

Nat rix Step Markowitz Sum Ored Marh:owitz No.of SPICE

NO.of OP NO.of NO.of O1 NO.of Sets Fill-in %l

Pivots Count Fill-ini Pivots Count Fill-in Sparse

I)ilterent ial 1 0 23 6 6 48 8 59
Pair

2 .1 4 0 4 15 4 14

l by 16 3 3 5 0 2 0 0 4
N7 57

4 2 2 0 2 2 0 1

totll .1 15 6 14 12 0 80.27

(':c:,udeI, I 5 12 6 5 2.1 6 24

futirler 2 .1 8 ,I 4 9 4 4

12 hy 12 3 2 2 0 2 I 0 1
Nz 3.1

total 3 I1 10 11 10 0 79.88

1 8 39 16 8 80 16 122
('ow pat ile
s('l IN ITT 2 .1 18 4 1 30 0 16

Trigger

3 2 8 0 2 16 4 6
18 by 18
N 7 66 2 5 0 2

total 4 16 20 1.1 30 6 80.0.

TABI,'; 1.1
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Parallel Pivoting Strategies

\I:ttrix Step Markowitz Sum Ored Markowitz JNo.or - SPICE

NO.or OP NO.of No.or 1 NO.or Scts Fill-in

Pivots Count Fill-in PiNvots ('oiint Fill-in Spair."

NIOS 1 4 0 0 .1 0 0 20

Cci 2 4 0 0 I 0 0 8

131)yv13 3 3 0 2 3 4 2 3
Nz 417

toa I2 11 2 0 76.02

N I OS 1 8 169 .30 8 156 30 173

AC'/1)(' 2 5 117 .1 0 1 4 12

3 3 0 0 3 0 0 5
2.1 by 2 '1
Nz 151 It j 3 0 0 3 0 0 4

5 2 13 0 2 0 0 3

1 ttal 5 21 '10 21 40 10 73.70

NIOS 1 8 178 40 R 150 40 149

Tr.-m~icnit 2 .1 91 I 72 It 14

3 3 0 0 3 0 0 5

N1.8 .1 3 0 0 3 0 0 4

5 2 25 2 2 10 4 3

ttl 5 20 410 20 48 22 71.20

TA1llA1; 1.1
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Fill-in Statistics

Natrix Step Set size OiP.Count Fill-in

IO by 1O 1 6 23 6
Nz 57 5 14 2

4 5 0
2 4 4 0
3 3 5 0
4 2 2 0

12 by 12 1 5 12 6
Nz 34 4 8 4

3 4 2
2 0 0

2 4 8 4
3 4 2
2 0 0

3 2 2 0

18 by 18 1 8 39 16
Nz 60 7 30 10

( 21 6
5 12 2
, 8 0

2 .1 18 4
3 9 2
2 0 0

3 2 8 0
4 2 5 0

TABLE 1.2
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Fill-in Statistics

Ma-t rix Step Set size OP.Count Fill-in

13hby 13 1 4 0 0
Nz 47 2 4 0 0

3 3 6 2
2 2 0

2 1 by 241 1 8 1039 36
Nz 154 1 120 24

0 8.1 Is
5 59 10
4 34 6
3 18 2

__ 2 9 0
2 5 117 4
____ '1 8 0
3 3 0 0
11 3 0 0
5 2 13 0

21 by 21 1 8 178 '10
Nz 158 7 129 28

(3 931 20
5511

4I .13 8
3 I8 4
2 9 2

2 I91 4
3 55

_ _ 2 __3 0

3 3 0 0
____ :3 0 0

5 2 25 2

TAIA1 1.2
Co 11 i I)itrd



33

PARALLELISM vs. FILL-IN

,MIat rix Step Max Reduced MAX Oil Reduced Fill-in Mrkowitz ,l'l(';

Size Size Comiwt OP.Count Sum

S6 1)y1 I 6 5 23 1I 2
Nz S7 2 5 1 13 , 0

3 4 3 6 2 0
4 2 2 0

1o1 d I2I 0

12 1y 12 1 , 4 12 8 4
N7 31 2 , 3 8 4 2

3 3 2 6 2 0
_ 2 2 0

tot ; 11 0

1) I 7 3,9 30 10
7 6 2 0 S 2(6 17 6

3 3 2 II 0
-1 2 2 0

toltal I 1 B 16 20 6

TA". 3 1,1V. .3
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PARALLELISM vs. FILL-IN

NMat rix Step Max Red ured MAX O' fledliced Fill-in \I;trkowiz SI IC1IC

Size Size Count O .Count SITI

13 hy 13 I 1 .1 0 0 0
Nz 17 2 4 4 0 0 0

3 3 2 6t 2 0
_ '_ 2 0

tot:l 12 0 2 0

21 b% '21 1 8 109 120 2.1
N7 151 2 5 4 9.3 57 2

3 3 3 0 0 0
.3 3 0 0 0

. 2 2 0
6_ 2 2 0

Iot I:1 21 26 -10 10

21 1 ,21 1 8 17 8 129 28
N, )5s 2 f 1 11O 91 .1

.3 3 3 0 0 0
• .3 3 0 0 0

3 2 22 13 .1
_ _ 2 2 0

toI:,l 6 21 .36 10 22

"I'A i1,; 1.3
(on i11ed
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____DCOMP ___ ___ICOMP

N\I:tri\ Step Noor 013. No.Or Nodo OP. Nodo
Pivots Coutin Fill-in P I %o0ts COtin( Fill-in

NI 0S 1 8 10fi 30 4 0 0
Atnjif'irr 2 5 117 '1 7 5.1 18

Ac/)c .3 3 0 0 Is 51 .
4 3 0 0 3 0 0

2.1 1) 21 .5 2 13 0 2 10 0
NZ_5 I ___ ____ _ _ _ _ _ _ _ _

Tlotal 521 .10 21 ______ 22

NIS )I 8 178 .0 -1 0 0
Amiplifier 2 4 119 10 7 01 17
Tranriient .3 3 0 0 Is 00 8

I3 0 0 :3 0 0
211 *v 2l1 5 2 25 0 2 13 1

,N I5, 1_ __ !___,_ 8_ _

T1:11i 20 50 21 26
1-31 72 41.19 1l0 72 4,19 1ls0

Futll A\dder 2 25S 258 809 25 217 706
.3 16 99 0 I 99 0
.1 11 110 12 11 110 20

1lh~ 6I 5 7 5 22 0 7 5 22
N7 t-5i -1 tO 5 -16 8

73 29 1 .3 29 -1
8 2 10 0 2 10 0

92 8 0 280
Total 1 112 ____ 282 1.12 ____ 28

Corn parison or i e Two l'roposvd Orderings
for IILFEIJ, 4.

TATIAI 2.1
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DCOMP ICOMP
Matri ULEVE], Steps Avg. iov, No.of eps Avg. q No.of
____ _r __ _I,_VI',I __eps_ Par. l11-in Par _ ows Fil-in

21 by 21 2 5 4 20 41 5 4.2 21 18
N7,151 3 5 4 20 I1s1 5 4.2 21 22

,t 5 4.2 21 10 5 1.2 21 22
.5 5 .1.2 21 .10 0 3.6 22 26

2 1) v 21 2 5 .1 20 .50 5 , 20 20
Nz 158 3 5 ,1 20 ,0 5 1.2 21 26

1 5 4 2(0 () 5 4.2 21 26
,5 5 .1 20 50 5 1.2 21 265

52 by '.52 2 5 9 15 128 8 7.8 .17 121
Nz l6 3 5 9 45 128 6 7.8 17 121

4 5 9 45 128 6 7.7 46 137
5 6 7.8 ,17 123 6 7.7 46 137

v by I II 2 9 15.8 1.12 282 9 1,5.8 1 12 258
N? 616 3 9 15.8 112 282 8 17.6 1.11 261

1 9 15.8 112 282 9 15.8 1 12 280
_ 9 15.8 1.12 282 9 15.8 1.12 280

78 1) 78 2 10 7.7 77 198 8 9.3 71 238
N\ ,3!.S 3 8 9.3 71 200 10 7..5 75 271

1 9 8..1 76 199 9 8.3 75 287
___10 7.7 77 202 9 8.3 75 292

.0. bx 05 2 30 13.0 .188 5R02 .10 12.3 193 5 132
Ni ,-5R 9 3 37 13.2 .190 5811 .11 12.1 .197 15.6

.I 34 1.1.3 .15 5R02 .11 12 ,189 5583
._ 38 13 .195 5785 30 13.4 481 5695

(omp;trkon of )COMI n) n(I ICOMP for )ifferent levels

"I'AII,I; 2.2
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